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Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel,
are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-kin altitude point in its de-
scent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested
for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number
and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss--Seidel method produces

an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as
compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm ex-
perienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric
Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects
of the viscous terms are investigated. Grid dependency questions are explored.
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Nomenclature

= speed of sound

= species mass fraction
= freestream speed of sound

= total energy

= species heat of formation, J/kg

= grid scaling reference length
= molar mass of species s, gm/mole

= heat conduction

= universal gas constant, 8.3144 J/mole-K

= freestream Reynolds number, p_c_lref/lzc_

= time, s

= Cartesian velocities
= Cartesian diffusion velocities

= chemical source term
= Cartesian coordinates

= thermal conductivity

= viscosity
= freestream viscosity

= density of species s
= freestream density

= shear stresses

Introduction

UTURE human space exploration will require sending spacevehicles to and from the moon, Mars, and beyond. The vehi-

cles used to facilitate the return missions, whether aerobrakes or

re-entry capsules, will be large diameter, blunt spacecraft that will
re-enter the Earth's atmosphere at high velocity. Tauber et al.t per-

formed trajectory studies on a 5-m-diam Mars return aerobrake that
would enter the Earth's atmosphere at between 12 and 16 km/s and

experience peak heating at between 64- and 68-km altitude. Lunar
return vehicles will experience velocities in excess of 10 km/s. These

spacecraft will often be traveling at an angle of attack creating a true
three-dimensional flow environment.
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Numerical algorithms will be used to calculate the aero- and ther-
mal loads these vehicles will encounter. The combination of large

body diameter and high-entry velocity creates near-equilibrium flow
conditions in some regions of the computed shock layer. These con-
ditions lead to numerical stiffness in the governing equations affect-

ing the stability and robustness of the numerical algorithm used to
calculate the flowfield. The computation of three-dimensional re-

acting flows is CPU intensive due to the complex physical models

used and the large number of governing equations to be solved. The

numerical algorithm must, therefore, also be efficient.
A considerable amount of research activity has been devoted

to developing nonequilibrium flow codes that are both robust and
efficient. 2-6 These codes have generally been tested and applied to

flows above 70 km or to the reproduction of ground-based experi-

ments.
This study tests the stability and convergence characteristics of

three numerical algorithms when applied to very stiff flow condi-

tions, a large diameter vehicle traveling at high velocity at an altitude

of 62 kin. The performance of each method is evaluated over a range

of test conditions.

Governing Equations

The three-dimensional Navier-Stokes equations represent the
conservation of mass, momentum, and energy. For chemical non-

equilibrium flows, they include species continuity equations. The

equations expressed in Cartesian coordinates are
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Table 1 Specific heat curve fit constants

Species a I a2 a3 a4 a5 a6 07 a8

N 2.4690 1.8827e-4 -1.7784e-7 5.9797e-11 -7.9413e-15 49765e-19 - 1.4627e-23 1.6116e-28

O 2.7919 -3.1113e-4 1.1147e-7 - 1.5967e-11 1.1444e-15 -4. 1633e-20 6.4779e-25 0.0

NO 3.2943 1.1040e-3 3.8424e-7 6.5532e-11 -5.5737e-15 2 4251e-19 -5.0930e-24 3.9301e-29

N2 3.3141 1.0055e-3 -3.760%-7 8.1710e-11 -1.0882e-14 8.7180e-19 -3.6331e-23 5.9153e-28

O2 3.2489 1.372e-3 -5,2831e-7 1.1474e-10 -1.3237e-14 7.9561e-19 -2.3639e-23 2.7448e-28

NO + 3.3277 92224e-4 -2.9325e-7 49489e-11 -5.0508e-15 3 6630e-19 - 1.5729e-23 2.7385e-28

N_ 3.4070 4.503e-4 2.0053e-7 -8.8528e-11 1.370e-14 -1046%-18 3.9647e-23 -5.9278e-28

O2 v 3.3036 1.0437e-3 -27916e-7 8.335e-12 7.1209e-15 -1.0151e-18 5.1945e-23 -9.2875e-28

O + 2.5018 - 1.2835e-5 2.279e-8 -1.3911e-11 3.5489e-15 3.7052e-19 1.7067e-23 -2.8987e-28

N + 2.6891 -30729e-4 1.5156e-7 -3.1635e-11 3 6498e-15 -2.3963e-19 8.3211e-24 -1.1783e-28

e- 2.5 0.0 0.0 0.0 0.0 O0 0.0 0.0
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In the preceding expressions

udrxj = urxx + vrx,, + wGz

Expressions for the shear stresses are provided in the Appendix.

The chemical source terms W._represent the production of species
from finite rate chemical reactions. In this study, a seven-species air

chemistry model is used. This was chosen over an 1l-species model

in an effort to reduce computer time requirements. Charge neutrality

is assumed throughout the flow, so only six species, (N, O, NO, N2,
02, NO+), are included in the equation set. Six chemical reactions

are evaluated to determine the species production terms. They are

N2+M_N+N+M

02+M _-_-O+O+M

NO+M_N+O+M

NO+O ._ N+O2

N2 +O_- N+NO

N + O _.,-_-NO+ + e -

The quantity M in the expressions can be any one of the species.
Forward and backward reaction rates for the reaction set are obtained
from Park. 7

Pressure is obtained from the expression

M,. (1)

The equation relating temperature to total energy is

"'R[
e=ZM, Jc_"OT+Zp"ht'+½P(U 2+v 2+w 2) re)

v s

Values of species specific heats c_, are obtained by curve fit re-

lations. Previously published specific heat curve fits X,_use a seg-
mented approach; the curve fit is divided into temperature bands,
each band employing a dillerent mathematical relation to obtain the

specific heat. Segmented curve fits can have discontinuities at the

segment boundaries, and conditional relations must be incorporated
into the code to identify which mathematical relation should be used.

An effort was undertaken to develop new curve fit relations that

would provide accurate values of species specific heat with no seg-
mentation of the curve fits. One mathematical expression is used

throughout the entire temperature range, from I00 to 20,000 K. Un-

der chemical nonequilibrium conditions, postshock temperatures
will not exceed 20,000 K for any realistic Earth entry velocity. The
curve relations take the form

Cv/R = al+a2T+a3T2+a4T3+asTO+aaTS+a7T_+a_T7 (3)

The constants were obtained by matching reference values for
Cp/R at eight temperatures from 0 to 20,000 K. Below 6000 K the

reference values were taken from JANAF thermochemical data.H)

Reference values lor the neutral dialomic species, N2, 02, and NO,

above 6000 K were calculated by Jaffe, I_ using rigorous quantum
mechanical definitions of the molecular partition functions. Ref-

erence values tot the atomic and ionized diatomic species above
6000 K were taken from Ref. 8.

Because no segmentation is used, the specific heat curve is con-

tinuous throughout the entire temperature range. Species enthalpy
or internal energy can be obtained by integrating Eq. (3). Values of
the constants, al, a2 ..... a_, for I l-species air are listed in Table 1.

Nondimensional Numbers

Two nondimensional parameters are used in the analyses pre-
sented in this paper. The first is the Damkohler number defined as

D. = "ftrans/ rchem (4)

The quantity rtrans is the characteristic time of translation. It can

be evaluated for each computational cell by dividing the length

of the cell by the mean flow velocity. The parameter r_h_m is the

characteristic time of chemical relaxation. This can be computed

for each chemical reaction and is a function of total density, species
density, and temperature. Two limiting cases of Damkohler number

are if D,, << 1, the flow can be considered frozen, and if D_ >> 1,
the flow is in chemical equilibrium.

The second nondimensional number used in this study is the
Courant-Friedrichs-Lewy (CFL) number defined as

CFL = I_,m_xlAt/Ax

where _.max iS the maximum of the eigenvalues. Explicit methods

cannot run at a time step that yields a CFL number greater than one.
Implicit methods can run at CFL numbers greater than one.
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SolutionAlgorithms

The governing equations are transformed from Cartesian (x, y, z)

to a generalized (_, rl. C,) coordinate system. The generalized

Navier-Stokes equations are

,gE 3F ;)G 1 F3R 3S 3T]
--+3Q +--+-- - 1 q- q- --1 +W

The transformed Q and W vectors are given by

O = (_/J W : 14"/J

and the transformed flux vectors are

. _k + _._ + _f
y Y

v= ,l_f: +,,,P +,=4 s= 0,k + _,_+ _:f
j J

G= G/_ + Gf + (=(_ T=
J J

The quantity J in the expressions is the Jacobian of the coordinate

transformation.

The simplest solution algorithm is the explicit Euler algorithm.
This method evaluates the flux and source term vectors at the cur-

rent, or n, time step. The three-dimensional explicit Euler solution

algorithm written in generalized coordinates is

_Q = -At[&E+6,F+&_G--W-(I/Re)(rS_R+3_S+3_T)] (5)

where

_SQ-_ Q .+ ' - Q_

The term/_t indicates a spatial difference in the _ direction. If no
source term is present, this method has a maximum allowable CFL
number, based on the fluid dynamics, of one.

For nonequilibrium flows, the species production terms obtained
from finite rate chemical reactions introduce an additional stiffness

into the equation set causing the algorithm to be unstable except for
very small CFL numbers. For this reason, the explicit Euler solution
algorithm is widely regarded as unsuitable for the computation of

nonequilibrium flows.
To overcome the time step restrictions imposed by the chemical

source terms, the source terms can be evaluated implicitly, at the

n + 1 time step. A Taylor series expansion is performed on this term
and the resulting algorithm, called point or chemistry implicit, is

given by

I - ,_wlAt-_ /3Q = RHS (6)

where the right-hand side (RHS) in Eq. (6) contains the explicit
terms, the elements on the right-hand side of Eq. (5). In this study

the inviscid flux differences are evaluated using Van Leer flux vec-

tor splitting, t2 Full viscous terms are included as well as a binary
diffusion model.

This algorithm is called the point implicit method because the

implicit terms are not spatially differenced but are evaluated point

by point. Because the chemistry terms are handled implicitly, this

algorithm has a CFL number limitation of one.
To achieve CFL numbers greater than one, it is necessary to

evaluate the fluid dynamic flux terms implicitly. One method that

has gained popularity in recent years is the lower-upper sym-
metric Gauss-Seidel (LUSGS). It was developed by Yoon and

Jameson. 13The method splits the Jacobian matrices, A = (3E/3Q),

B = (;JF/;_Q), and C = (,3G/,3Q), into positive and negative com-
ponents and factors the resulting split matrices into three submatri-

ces. The resulting algorithm is given by

LDU[iQ = RHS (7)

where

L = 1 + AtI[r, +rl,+r,]l - A_ 1-- B;-I-C;-I - --

D = [I + At([r,, + rl, + r,]l)] -_

U = 1 + At[[ra + rh + r,]l + A,+ I + B j+ I + C_+_]

The approximate split flux Jacobians A + and A are computed

from the equation

A ± = (A + r,l)/2 (8)

where r, is the spectral radius equal to the absolute value of the

largest eigenvalue,

r_ = IUI + c_/_ 2 + _>_+ _
(9)

In Eq. (10), U is the contravariant velocity in the _ direction,

Gu + Go + Gw. Similar expressions are used to calculate the B+
and C+ matrices. To obtain &Q, the [L] and [U] elements are solved

by sweeping from one comer of the computational domain to the
other. One matrix inversion is required per point per step because

the (3W/3Q) matrix must be inverted.
The third method tested was developed by Palmer. ,4 This tech-

nique maintains the stability of a nonequilibrium algorithm within
the context of the explicit formulation. This explicit under-relaxation

algorithm evaluates the species density equations as well as the total

density conservation equation explicitly. From these equations the

changes in species mass fractions are calculated

SCi = (_Pi -- ci_p)/P (10)

If the absolute value of the maximum change in species mass fraction

is greater than a prescribed value tol then the changes in species mass
fraction are scaled

¢5ci = _ * tol (11)
I_c_ [

The parameter tol is an under-relaxation factor with a value between
0 and 1. Additionally, no species mass fraction is allowed to become

negative. Species densities are updated by

p_+l =c_+lpn+l (12)

In effect, this technique reduces the chemistry time step in regions
of stiffness and has been applied to a variety of hypersonic flow

computations.a.v*._s

Boundary Conditions

The boundary conditions used in the calculations to come were
as follows: Along the inflow (k = k max) plane, freestream values
are maintained. Symmetry conditions are used for the j = 1 and

j = j max planes. Along the outflow (i = i max) plane and along
the singular line (i = 1), values are obtained by extrapolation. A
constant temperature of i 500 K was maintained on the body surface
that was assumed to be noncatalytic. Nonslip and zero pressure

gradient conditions were enforced.
Implicit boundary conditions are incorporated into the LUSGS

option. At the body surface, they are based on the relations

&Pl = 3p2 _TI = 0 &c,q = &c_2

_Spu_ = &pv_ = ,_pw_ = 0

The subscript 1 in the preceding relations refers to the body surface
and the 2 to the next interior plane. The expressions are used to

obtain values of _Q at the body surface.
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Results
Specific Heat Data

Results generated using the new curve fit relations are com-
pared against two previously published segmented curve fits.

Balakrishnan X developed curve fit relations up to 50,000 K using
from five to seven temperature bands. The curve fits have the form

Cp = a + bT + c/T 2 (13)

The second curve fit relations, used by Gnoffo et al.,_ have the form

Cv/R = aj + a2T + a3T 2 + a4T 3 + asT 4 (14)

and are used to calculate species specific heats up to 35,000 K using
five temperature bands.

Figure la compares values of the specific heat of atomic nitro-

gen calculated using the three curve fit relations. The segmented
curve fits exhibit discontinuities at the temperature band interfaces,
particularly at 6,000 and 10,000 K. The nonsegmented curve fit is

continuous throughout the entire temperature range and reproduces
the JANAF specific heat data with a maximum error of 2.2%. At
temperatures above 6,000 K, the three curve fits give similar data,

except for the Balakrishnan curve fit in the temperature range of
10,000-15,000 K.

Figure lb shows specific heat data for NO. Again the segmented

curve fits show discontinuities at the 3,000, 6,000, and 10,000 K

temperature band segment interfaces. Above 12,000 K only the un-
segmented curve fit relations match the reference values of Jaffe,_l

which include effects such as a nonrigid rotor rotational model and

vibration-rotation coupling. Vibration-rotation coupling produces
a significant negative contribution to the specific heat of nitric oxide

above 12,000 K. The nonsegmented curve fit values are in good

agreement with the reference values along the entire temperature
range.

a)

45

40 ¸

6
-_ 35-

30-

25

-- present /f

........ Ref. 8 ff
I..... Ref. 9 ff

I I I I
5 10 15 20x103

Temperature, K

Solution Algorithm Comparisons

The solution algorithms were tested by computing flow over the

base of the Apollo 4 return capsule at the 62-km-altitude point
along its descent trajectory. The capsule geometry is the intersec-

tion of a 4.69-m-radius sphere with a 33-deg half-angle cone. 16The
cone-sphere intersection is rounded into a 19.56-cm-radius shoul-

der. The freestream conditions at 62 km are given as

r. = 4.69m

p_c = 2.407 × 10 4 kg/m 3

nt

p_ = 16.69_-

T_ = 241.5 K

c_. = 311.5m/s

mass fraction N2 = 0.7656

mass fraction O2 = 0.2344

By varying the freestream Mach number, it is possible to simulate

different levels of chemical stiffness. Table 2 displays the computed
postshock stagnation line Damkohler number at 62 km for each of

the six chemical reactions at Mach numbers of 15, 30, and 40. Math

40 corresponds to a freestream velocity of 12.5 ktrds. For most of the

reactions, the Damkohler number increases with increasing Mach

number. Increasing Damkohler number indicates increasing chem-
ical stiffness. The ionization of nitric oxide reaction is the stiffest

reaction at Mach 30. The Darnkohler number of the thermal dissocia-

tion of nitric oxide reaction, reaction 3, increases more than an order

of magnitude with each increased Mach number and is the stiffest
reaction at Mach 40. There is a large increase in Damkohler number

for reactions 1,2, 3, and 6 when the Mach number is increased from

30 to 40. This is in part due to the fact that the seven-species model is

inadequate at 12.5 km/s and leads to unrealistically high postshock
temperatures.

The 49 × 11 × 49 grid used in the first set of parametric studies

is shown in Fig. 2. Only every third grid line in the body normal
and streamwise directions are shown for figure clarity. Calculations

Table 2 Postshock stagnation line Damkohler number, 62 kin

Mach= 15 Mach = 30 Mach = 40

N2+M=N+N+M 6.8 x 10-4 0.38 97.9
O2+M=O+O+M 5.1 67.2 363

NO+M=N+O+M 0.82 246 I0,180
NO+O=N+O2 4. I 103 44.7
N2 +O=N+NO 43.7 67 18.4
N+O=NO + +e - 91.1 463 989

b)

Fig. I

60-
I-- present ,'"
[ ........ Ref. 8 "'"
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-6 45

t:£
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Specific heat comparison: a) atomic nitrogen and b) nitric oxide.
Fig, 2 49 x 11 x 49 grid.
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Fig. 3 Convergence histories, point implicit method: a) Mach 15,

b) Mach 30, and c) Mach 40.

performed using this grid were performed at zero angle of attack so

only a 90-deg section of the Apollo vehicle is used.
Figure 3 presents convergence histories of the point implicit

method at Mach 15, 30, and 40. In these and subsequent figures,

the maximum level of residual for each calculation was scaled to

unity to aid the comparison at different Mach numbers. Figure 3a
shows the results at Mach 15. The point implicit solution converges

in a smooth manner while running at maximum CFL numbers of 0.8

and 0.9. The L2 norm of the energy residual, defined as the square

root of the sum of the energy residual at each point in the compu-

tational domain squared, converges eight orders of magnitude after

running 16,000 steps at CFL = 0.9.

At Mach 30, the stiffness of the chemistry terms increases. As

shown in Fig. 3b, the convergence rate at a CFL number of 0.9
slows after a three order of magnitude drop in residual. The rate

of convergence then increases but slows again after converging an
additional four orders of magnitude. Lowering the CFL number did

not eliminate the decrease in the rate of convergence. This same

behavior is apparent when the maximum CFL number was reduced
to 0.8 and 0.59. The overall convergence rate of the point implicit

method is slightly less than that seen at Mach 15.

Results when the point implicit method was run at Mach 40 are

shown in Fig. 3c. The performance of the method is similar to that
seen at Mach number 30 except the second decrease in the rate of

convergence occurs at a later point in the computation.

The performance of the explicit under-relaxation method is ex-

amined in Fig. 4. The value of the under-relaxation parameter tol

seen in Eq. (11) was set to 0.01. The convergence histories for Mach
15 are shown in Fig. 4a. The solution converges in a smooth manner
at maximum CFL numbers of 0.55, 0.68, and 0.8, but when the CFL

number is raised to 0.9 the convergence profile flattens out after

dropping just over three orders of magnitude.
When the Mach number is raised to 30 the convergence difficulties

occur even when the CFL number is reduced to 0.27. This is shown

in Fig. 4b. The oscillating behavior of the residual is clearly evident
at CFL numbers of 0.6 and 0.8. The same trend was seen at Mach
40. For no value of CFL number would the solution converge.

The explicit under-relaxation algorithm is an approximate
method. The under-relaxation parameter tol has the same effect

as the implicit chemistry matrix does in the point implicit algo-
rithm. Evaluating the species density updates using tol is not as

rigorous or as time consuming as filling and inverting the implicit
chemistry matrix. When the chemistry is not very stiff this approx-
imate nature does not adversely affect the solution process. When

the chemistry becomes stiff the explicit under-relaxation method
breaks down. What happens is that the code over- or undershoots

the proper chemical state of the gas, and the solution oscillates be-
tween two chemical states. This happens throughout the flowfield

but particularly in regions of high chemical stiffness. The explicit
under-relaxation method never converges to a single steady-state

solution.

A parametric study on the under-relaxation parameter tol was

performed at Math 30 to see if the value of the parameter affected

the convergence rate of the method. Figure 4c shows the conver-

gence histories obtained using three values of the under-relaxation

parameter. All three residuals flatten out and begin an oscillatory
behavior. The solution using the lowest value of tol, 0.001, con-

verges nearly one order of magnitude further before flattening out,
but none of the tol values permitted full convergence to occur.

Comparing Figs. 3 and 4, both the point implicit and the explicit
under-relaxation methods experience a leveling off of the rate of

convergence at Mach 30. The point implicit is able to overcome this
after some time and then is able to continue to converge. The explicit

under-relaxation cannot, and the solution from this point oscillates.

The performance of the LUSGS algorithm is presented in Fig. 5.

Figure 5a shows the convergence histories at Mach 15. At maximum
CFL numbers of 20, 40, and 90, smooth convergence is achieved.

The method became unstable, however, when the CFL number was

increased to 180.

Figure 5b shows the convergence histories at Mach 30. The resid-
ual curve now flattens after converging three orders of magnitude.

The residual then drops another three orders of magnitude at this

reduced rate before dropping rapidly for about 300 iterations after
which the residual curve flattens out again. The performance of the

LUSGS method diminished when the Mach number was increased

from 15 to 30. At Mach 30, 50% more iterations were required to

achieve the level of convergence obtained at Mach 15. Lowering the

CFL number did not affect the shape of the residual profile.

The performance of the LUSGS method degrades severely at
Mach 40, shown in Fig. 5c. When the algorithm was run at a CFL

number of 23, the residual profile leveled off after converging two

orders of magnitude, similar to the behavior seen with the explicit
under-relaxation method. The convergence problem remained when

the CFL number was reduced to 5.8. Only when the CFL number

was reduced to 2.3 did the performance improve. At a CFL number
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of 2.3, the residual profile was similar to that produced by the point
implicit method.

There are several possible reasons besides chemical stiffness why
the solution algorithm performance worsened when the Mach num-
ber was increased. In the LUSGS method, the implicit flux Jacobians
of the inviscid fluxes are split into positive and negative compo-
nents and then differenced using one-sided differences. The viscous,
which are centrally differenced, are not treated implicitly. The vis-
cous terms might, therefore, affect the performance of the method.

A comparison was made in the behavior of the LUSGS method
with and without viscous terms. The algorithm was run at Mach 30
at CFL numbers of 36 and 90. The results are shown in Fig. 6a.

There is very little difference in the residual profiles with or without
viscous terms, so viscous terms would not appear to be the cause
of the diminished performance. They do have some effect on the
stability of the method. When the viscous terms were removed, it
was possible to run the code at a CFL number of 179. The results
obtained without viscous terms at CFL numbers 36, 90, and 179 are
shown in Fig. 6b. There is not a substantial difference in the three
residual histories.

Another possible reason for the diminished performance could be
grid resolution effects. The spatial resolution might be insufficient
to resolve the chemical gradients. Computations were performed
using an axisymmetric version of the code with a 49 x 49 grid.
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equivalent to one plane of the three-dimensional grid. The compu-

tation was repeated using an 89 x 89 grid. This represents a uniform

increase in the spatial resolution throughout the computational do-

main. An axisymmetric computation was performed to reduce the

computer time necessary, but the axisymmetric solution was found

to converge in a similar fashion to a three-dimensional zero-angle-
of-attack calculation. Doubling the number of grid points reduces

the Damkohler number in the flowfield by reducing the characteris-

tic time of translation in each computational cell.

Figure 7 shows the results of this test using the point implicit and
LUSGS methods. Solutions using the 49 x 49 and 89 x 89 grids

show similar convergence profile shapes. The 49 x 49 and 89 × 89

grid solutions for both methods show a leveling off in the rate of

convergence after the residual drops three orders of magnitude. The

point in the computation when the residual levels offwith the 89 x 89

grid occurs after twice the number of iterations as the 49 x 49 grid.
Increasing the spatial resolution by a factor of four everywhere in the

computational domain does not seem to alleviate the performance

dropoff of either method. The uniformly increased spatial resolution
reduces the convergence rate while maintaining the same profile

shape for both methods.
Another possibility is that grid dependencies in the shock region

are affecting the convergence characteristics. The highest temper-

atures and, therefore, fastest reaction rates occur behind the bow

shock. The adaptive grid code SAGE 17 was used to increase the

spatial resolution in the shock region by adapting the original grid
to the solution. This reduces the Damkohler number in the region

of the bow shock. Results using the explicit under-relaxation and

LUSGS methods with the original and adapted grids at Mach 30 are

shown in Fig. 8a. There is no improvement in the performance of the

explicit under-relaxation method when an adapted grid is used. The
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initial convergence rate is lower, and both the original and adapted

grid residual profiles asymptote to the same value. The convergence

profile for the LUSGS method using the adapted grid is smoother

than that obtained using the original. Both solutions obtain the same

overall rate of convergence.

The effect of using the LUSGS method with an adapted grid at

Mach 40 is shown in Fig. 8b. The solution does not converge using

the adapted grid when the algorithm is run at a CFL number of 55

or 21. When the CFL number is reduced to 5.5, the performance of

the method is improved using the adapted grid, although the overall
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convergence level achieved after 3000 steps is not significantly dif-

ferent from that obtained using the original grid at a CFL number
of 2.3.

Figure 9 compares the solution algorithms against each other

in terms of convergence vs Cray C-90 CPU time expended. The

results presented here might vary from code to code depending on

the level of vectorization employed. The point implicit and LUSGS

algorithms both required one 10 x 10 matrix inversion per point per

step. The matrix inverter was highly vectorized, utilizing an inner

loop of length 26,411 (49 x 11 x 49). All three methods used the

same evaluation of the explicit terms, the terms on the right-hand

side of Eq. (5). In this study, the explicit under-relaxation method

required 72.9/zs per point per step or 1.44 s per step on a 49 × 11 × 49

grid. The point implicit method used 1.93 s per step, and the LUSGS

algorithm required 5.07 s per step.

Results at Mach 15 are presented in Fig. 9a. The LUSGS algo-

rithm produces an eight order of magnitude drop in the L2 norm of

the energy residual in one-third the CPU time of the point implicit or

explicit under-relaxation methods. The explicit under-relaxation al-

gorithm outpertbrms the point implicit method by a smaller margin.

At Mach 30, the performance of the LUSGS method has deteri-

orated, but the algorithm still produces an eight order of magnitude

drop in the residual in half the CPU time of the point implicit method

as shown in Fig. 9b. The explicit under-relaxation method failed to

produce a converged solution at this Mach number. At Mach 40, the

LUSGS algorithm no longer outperforms the point implicit method.

To achieve a converged solution, it was necessary to severely reduce

the CFL number with the LUSGS method. From Fig. 9c, it is not

apparent whether the LUSGS method would achieve the seven or-

der of magnitude drop in residual achieved by the point implicit
algorithm.

The three solution algorithms yielded essentially the same

steady-state solution, as they should since all three use the same

right-hand-side elements. When the explicit under-relaxation algo-

rithm would break down, the solution would oscillate between two

chemical states. At a given point the temperature might oscillate

between, say, 5200 and 5220 K with a corresponding oscillation in

species mass fraction and the other flow quantities.

Summary and Conclusions

Three solution algorithms are used to compute nonequilibrium

flow around the Apollo 4 return capsule at 62-km altitude. By vary-
ing the Mach number, the efficiency and robustness of the solution

algorithms were tested for different levels of chemical stiffness.

The point implicit method was able to converge at all Mach num-

bers at CFL numbers close to the explicit limit of 1.0. The shape

of the residual profiles was not affected by increasing CFL number.

The method showed only a slight performance degradation with
increasing chemical stiffness.

The explicit under-relaxation algorithm achieved convergence

only at Mach 15 and then only for a CFL number below 0.9. Above

Mach 15, the method would only converge one order of magnitude

before residual profile began oscillating.

The CFL number does not affect the shape of the LUSGS residual

profile at Mach 30 and below. Effective convergence is possible at

high CFL numbers. At Mach 40, the LUSGS method only converged

if the CFL number was reduced to a low value, 2.3 in this study.

Even then the residual decreases only four orders of magnitude
before leveling off.

The fact that the viscous terms were evaluated explicitly did not

affect the convergence rate or account for the performance dropoff

of the LUSGS method at Mach 30 although it did affect the stability.

When the solution algorithm is run inviscid it is possible to use a
higher CFL number.

The performance trends of the three solution algorithms seem

to be grid independent. When the spatial resolution was uniformly

increased by doubling the number of grid points in each direction,

the convergence rate of the point implicit and LUSGS algorithms

slowed, but the shape of the residual profiles remained unchanged.

The use of a solution-adapted grid did not improve the performance

of the explicit method. The residual sill flattened out after converging

one order of magnitude. For the LUSGS algorithm the residual pro-

file was smoother using the adapted grid, but the overall convergence

rate was unchanged at Mach 30. At Mach 40 the LUSGS method

showed a slight performance improvement using the adapted grid,

but the rate of convergence was still much lower than that seen with
the LUSGS algorithm at Mach 30.

At low levels of chemical stiffness, the LUSGS algorithm outper-

forms both the point implicit and explicit under-relaxation meth-

ods. At Mach 15, LUSGS used one-third the Cray C90 computer
time to achieve the same level of convergence. As chemical stiff-

ness increases, all three methods show a performance dropoff. At

Mach 30, the explicit under-relaxation method cannot produce a

converged solution. The convergence rate of the LUSGS method



PALMERANDVENKATAPATHY 1219

slowsmorerapidlythanthepointimplicit,butatMach30LUSGS
canstillachieveagivenlevelofconvergenceinhalfthecomputer
time.

AstheDamkohiernumberscontinuetoincrease,theperformance
oftheLUSGSmethodcontinuestodegraderelativetopointimplicit.
AtMach40therewasnoadvantagetousingLUSGS.Therateof
convergenceoftheLUSGSalgorithmwasslightlylessthanthat
ofpointimplicit,andLUSGScouldnotachievethesamelevelof
convergence.

IfanIl-speciesairmodelwereused,themaximumtemperature
levelwoulddecrease.Thiswouldtendtoreducechemicalstiff-
nessinthesehigh-temperatureregions.It isunknownwhetherthe
overallchemicalstiffnesswouldbereducedwithoutevaluatingthe
Damkohlernumberofthereactionsinvolvingtheadditionalion-
izedspecies.Thegenerationandinversionoftheimplicitmatri-
ceswouldbesignificantlymoreexpensiveintermsofcomputer
time.

Appendix:
Theshearstressesaredefinedas

Viscous Terms

2 F a u a v /_w I [-au a v 1

2 r ,')v au
= =i,[2=-- rx_ = ax Jr,., L "Y ax _J +

2 [2ilm av ¢h,] ' ml"' 5" L _ ay a., " .

Expressions for the heat conduction terms are

a T a T a T

q_=x-- q_,=x-- q_=x--
_tx ay 3z
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